Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Floating aquatic vegetation and algal blooms are increasing with global warming, potentially reducing UVB exposure and, consequently, vitamin D (vit-D) synthesis in freshwater turtles. Vit-D mediates calcium metabolism and overall health, yet the effects of floating aquatic vegetation on vit-D levels remain unclear, as is whether turtles actively avoid habitats with abundant floating vegetation. Here, we address these questions by quantifying vit-D3 levels in the blood of adult female painted turtles (Chrysemys picta) exposed to high-vegetation (darker/colder) or clear-water (lighter/warmer) treatments for one month outdoors and one month indoors at a single temperature during late summer and early fall. The observed circulating vit-D3 levels resembled those reported for other freshwater turtles, declined over time in both treatments, and were marginally lower under high vegetation after 60 days compared to clear water. However, this difference disappeared after correcting for lymph contamination and multiple comparisons, suggesting that perhaps adult females are robust to the effect of floating vegetation, but whether they were buffered by vit-D3 stores in lipids is unclear. Additionally, in subsequent years, females were exposed to habitat choice experiments and exhibited a strong preference for high floating vegetation over clear water, both as a group (outdoors) and individually (outdoors, and indoors at 21 °C and 26 °C), consistent with known benefits conferred by floating vegetation (food, predator avoidance). While no ill effects of high vegetation nor behavioral avoidance were detected here, longer experiments at different seasons on both sexes and varying ages are warranted before concluding whether painted turtles are truly resilient in their vit-D levels or if, instead, a tradeoff exists between the known benefits of floating vegetation and potential [yet unidentified] detrimental effects (lower dissolved oxygen or vit-D) when vegetation is overgrown for extended periods.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Abstract: Painted turtles are remarkable for their freeze tolerance and supercooling ability along with their associated resilience to hypoxia/anoxia and oxidative stress, rendering them an ideal biomedical model for hypoxia-induced injuries (including strokes), tissue cooling during surgeries, and organ cryopreservation. Yet, such research is hindered by their seasonal reproduction and slow maturation. Here we developed and characterized adult stem cell-derived turtle liver organoids (3D self-assembled in vitro structures) from painted, snapping, and spiny softshell turtles spanning ~175My of evolution, with a subset cryopreserved. This development is, to the best of our knowledge, a first for this vertebrate Order, and complements the only other non-avian reptile organoids from snake venom glands. Preliminary characterization, including morphological, transcriptomic, and proteomic analyses, revealed organoids enriched in cholangiocytes. Deriving organoids from distant turtles and life stages demonstrates that our techniques are broadly applicable to chelonians, permitting the development of functional genomic tools currently lacking in herpetological research. Such platform could potentially support studies including genome-to-phenome mapping, gene function, genome architecture, and adaptive responses to climate change, with implications for ecological, evolutionary, and biomedical research.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce. To capture the macroevolutionary diversity of vertebrate chromatin conformation, here we generate de novo genome assemblies for two cryptodiran (hidden-neck) turtles via Illumina sequencing, chromosome conformation capture, and RNA-seq:Apalone spinifera(ZZ/ZW, 2n= 66) andStaurotypus triporcatus(XX/XY, 2n= 54). We detected differences in the three-dimensional (3D) chromatin structure in turtles compared to other amniotes beyond the fusion/fission events detected in the linear genomes. Namely, whole-genome comparisons revealed distinct trends of chromosome rearrangements in turtles: (1) a low rate of genome reshuffling inApalone(Trionychidae) whose karyotype is highly conserved when compared to chicken (likely ancestral for turtles), and (2) a moderate rate of fusions/fissions inStaurotypus(Kinosternidae) andTrachemys scripta(Emydidae). Furthermore, we identified a chromosome folding pattern that enables “centromere–telomere interactions” previously undetected in turtles. The combined turtle pattern of “centromere–telomere interactions” (discovered here) plus “centromere clustering” (previously reported in sauropsids) is novel for amniotes and it counters previous hypotheses about amniote 3D chromatin structure. We hypothesize that the divergent pattern found in turtles originated from an amniote ancestral state defined by a nuclear configuration with extensive associations among microchromosomes that were preserved upon the reshuffling of the linear genome.more » « less
- 
            Maternal hormones such as estrogens deposited into the yolk of turtle eggs follow circulating levels in adult females, and they may alter the sexual fate of developing embryos in species with temperature-dependent sex determination (TSD). In temperate regions, this deposition occurs during the spring when estrogens increase in adult females as ambient temperatures rise, drop after the first clutch, and peak again (albeit less) in the fall. Global warming alters turtle nesting phenology (inducing earlier nesting), but whether it affects circulating hormones remains unknown, hindering our understanding of all potential challenges posed by climate change and the adaptive potential (or lack thereof) of turtle populations. Here, we addressed this question in painted turtles (Chrysemys picta) by quantifying estradiol, estrone, and testosterone via mass spectrometry in the blood of wild adult females exposed to 26 °C and 21 °C in captivity between mid-August and mid-October (15 females per treatment). Results from ANOVA and pairwise comparisons revealed no differences between treatments in circulating hormones measured at days 0, 2, 7, 14, 28, and 56 of the experiment. Further research is warranted (during the spring, using additional temperatures) before concluding that females are truly buffered against the indirect risk of climate change via maternal hormone allocation.more » « less
- 
            Abstract Reproduction is a fundamental aspect of life that affects all levels of biology, from genomes and development to population dynamics and diversification. The first Tree of Sex database synthesized a vast diversity of reproductive strategies and their intriguing distribution throughout eukaryotes. A decade on, we are reviving this initiative and greatly expanding its scope to provide the most comprehensive integration of knowledge on eukaryotic reproduction to date. In this perspective, we first identify important gaps in our current knowledge of reproductive strategies across eukaryotes. We then highlight a selection of questions that will benefit most from this new Tree of Sex project, including those related to the evolution of sex, modes of sex determination, sex chromosomes, and the consequences of various reproductive strategies. Finally, we outline our vision for the new Tree of Sex database and the consortium that will create it (treeofsex.org). The new database will cover all Eukaryota and include a wide selection of biological traits. It will also incorporate genomic data types that were scarce or non-existent at the time of the first Tree of Sex initiative. The new database will be publicly accessible, stable, and self-sustaining, thus greatly improving the accessibility of reproductive knowledge to researchers across disciplines for years to come. Lastly, the consortium will persist after the database is created to serve as a collaborative framework for research, prioritizing ethical standards in the collection, use, and sharing of reproductive data. The new Tree of Sex consortium is open, and we encourage all who are interested in this topic to join us.more » « less
- 
            Temperature-dependent sex determination (TSD) decides the sex fate of an individual based on incubation temperature. However, other environmental factors, such as pollutants, could derail TSD sexual development. Cadmium is one such contaminant of soils and water bodies known to affect DNA methylation, an epigenetic DNA modification with a key role in sexual development of TSD vertebrate embryos. Yet, whether cadmium alters DNA methylation of genes underlying gonadal formation in turtles remains unknown. Here, we investigated the effects of cadmium on the expression of two gene regulators of TSD in the painted turtle, Chrysemys picta, incubated at male-producing and female-producing temperatures using qPCR. Results revealed that cadmium alters transcription of Dmrt1 and aromatase, overriding the normal thermal effects during embryogenesis, which could potentially disrupt the sexual development of TSD turtles. Results from a preliminary DNA methylation-sensitive PCR assay implicate changes in DNA methylation of Dmrt1 as a potential cause that requires further testing (aromatase methylation assays were precluded).more » « less
- 
            During meiotic prophase I, tightly regulated processes take place, from pairing and synapsis of homologous chromosomes to recombination, which are essential for the generation of genetically variable haploid gametes. These processes have canonical meiotic features conserved across different phylogenetic groups. However, the dynamics of meiotic prophase I in non-mammalian vertebrates are poorly known. Here, we compare four species from Sauropsida to understand the regulation of meiotic prophase I in reptiles: the Australian central bearded dragon ( Pogona vitticeps ), two geckos ( Paroedura picta and Coleonyx variegatus ) and the painted turtle ( Chrysemys picta ). We first performed a histological characterization of the spermatogenesis process in both the bearded dragon and the painted turtle. We then analyzed prophase I dynamics, including chromosome pairing, synapsis and the formation of double strand breaks (DSBs). We show that meiosis progression is highly conserved in reptiles with telomeres clustering forming the bouquet , which we propose promotes homologous pairing and synapsis, along with facilitating the early pairing of micro-chromosomes during prophase I (i.e., early zygotene). Moreover, we detected low levels of meiotic DSB formation in all taxa. Our results provide new insights into reptile meiosis.more » « less
- 
            Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
